

DE LA DEPRESIÓN AL CÁNCER:

Alegre Angélica Flores Pérez, Norma Angélica Villanueva Martínez, Omar Molina Alejandre, José Manuel de la Rosa Vázouez. Adriana Ganem Rondero

Los autores de este artículo han formado un grupo multidisciplinario, enfocado en el estudio de la terapia fotodinámica. Para ello emplean fotosensibilizadores formulados en nanoacarreadores como una alternativa a fin de combatir infecciones en la piel y en los ojos. La intención es contribuir a mitigar el grave problema de resistencia bacteriana al que ya nos estamos enfrentando.

La luz impacta todos los aspectos de nuestra vida. La variación de la luz solar y la energía que transmite a lo largo del día, así como en las distintas regiones de la tierra, afecta nuestro estado anímico, e incluso provoca cambios conductuales. El ciclo circadiano que regula los ciclos de sueño-vigilia responde a la luz y a la oscuridad, teniendo influencia sobre diversos procesos corporales. El poder de la luz ha sido ampliamente reconocido desde la Antigüedad, y sus efectos terapéuticos han sido objeto de numerosas investigaciones.

poder de la luz como agente terapéutico a lo argo de la historia Estamos acostumbrados a vivir rodeados de uz: al abrir una ventana por la mañana, al encender una lámpara o al mirar la pantalla del celular. Pero, ¿y si esa misma luz pudiera utilizarse para combatir el cáncer o eliminar microorganismos?

El uso terapéutico de la luz —conocido como luminoterapia o fototerapia – se remonta a las civilizaciones anespecialmente dedicados a la curación mediante la luz solar, reflejo de una intuición temprana sobre su poder terapéutico. Hace más de 3,500 años, en Egipto e India, ya se aplicaban extractos vegetales sobre la piel y se exponían a la luz solar para tratar afecciones cutáneas [1]. En la antigua China, se recurría a hojas de papel coloreadas que se exponían a la luz del sol para tratar a los

Ya en el siglo XIX comenzó la era moderna de la fototerapia. En 1877, los científicos británicos Downes y Blunt observaron que la exposición a la luz solar podía inhibir el crecimiento bacteriano [3]. A inicios del siglo XX, la fototerapia fue reconocida como una herramienta médica válida cuando Niels Finsen recibió el Premio Nobel de Medicina en 1903 por su tratamiento del lupus vulgar con rayos de luz [2].

Durante la segunda mitad del siglo XX, las aplicaciones terapéuticas se multiplicaron: la luz ultravioleta se utilizó para tratar afecciones como psoriasis, vitíligo y dermatitis atópica [4], mientras que la luz azul se consolidó como tratamiento eficaz para la ictericia neonatal, salvando a millones de bebés de complicaciones neurológicas [5].

Desde los templos solares hasta las estrategias terapéuticas basadas en evidencia científica, la historia de la luminoterapia es una travesía de intuición, observación e innovación. Cada avance nos ha acercado a comprender la luz no solo como un fenómeno natural, sino como una poderosa herramienta médica. Hoy, este legado ancestral sienta las bases para una nueva era en la que la luz puede diseñarse, controlarse y dirigirse para combatir enfermedades complejas, desde la depresión hasta el cáncer.

Aplicaciones terapéuticas actuales de la luz

El efecto terapéutico de la luz depende en gran medida de su longitud de onda, ya que los diferentes tejidos del cuerpo absorben y responden de forma distinta a cada tipo de radiación. Por ejemplo, la radiación ultravioleta del tipo B, que tiene longitudes de onda entre los 290 y los 315 nm, estimula la síntesis de vitamina D en la piel, lo que ha sido aprovechado para tratar enfermedades como el raquitismo.

Por otra parte, la luz azul cuya longitud de onda va de los 400 a los 490 nm tiene un efecto bactericida útil y favorable en el tratamiento del acné, mientras que la luz verde con longitudes de onda mayores que van de los 492 a los 577 nm, participa en la regulación de citocinas (moléculas moduladoras de la inflamación) y la proliferación celular. La luz roja (622-780 nm) y la infrarroja cercana (780 nm -1 mm) han demostrado capacidad para reducir inflamación, estimular la producción de Adenosin Trifosfato, -mejor conocido como ATP que es la molécula fundamental en la obtención de energía- y favorecer la regeneración de tejidos, siendo utilizadas para tratar dolores musculares, lesiones, e incluso ciertas formas de cáncer (de piel, pulmón, cabeza y cuello, entre otros) [6].

El efecto terapéutico de la luz depende en gran medida de su longitua de onda. Va due los diferentes tejidos del cuerpo absorben y responden de forma distinta a cada tipo de radiación. Por ejemplo, la radiación ultravioleta del tipo B, que tiene longitudes de onda entre los 290 y los 315 nm, estimula la síntesis de vitamina D en la piel, lo que ha sido aprovechado para tratar enfermedades como el raquitismo.

FOTOTERAPIA A TRAVÉS DEL TIEMPO

1500 A. C

1000 A. C.

1200

ANTIGUA GRECIA

Se practicaba helioterapia mediante arenación (exposición total al sol)

MEDICINA ÁRABE Ibn al-Bitar documenta en la enciclopedia farmacéutica árabe Mofradat Al Adwiya el

uso de Ammi majus con exposición solar para tratar vitíligo

ANTIGUO EGIPTO E INDIA

Se utilizaron extractos vege con la luz solar para tratar enfermedades de la piel

LUZ Y MICROORGANISMOS

Downes y Blunt demostraron que la luz tiene propiedades que pueden detener o reducir la actividad de

1877

1903

PREMIO NOBEL

Niels Finsen gana el Premio Nobel por su trabajo con fototerapia para el lupus

GABINETE DE LUZ El Hospital General de Massachusetts utilizó 'baños de gabinete con luz eléctrica' para pacientes con eczena

1905

1907

TERAPIA FOTODINÁMICA escribir el efecto celular de la luz con

PRIMERA GUERRA MUNDIAL La luz se emplea en el tratamiento d

1914-1918

1958

ICTERICIA NEONATAL Richard J. Cremer demuestra que la luz ayuda a reducir la ictericia neonatal

DEPRESIÓN ESTACIONAL Kripke aplica luz blanca a paciente

1981

2000

TERAPIA PARA LA FDA aprueba la terapia fotodinámica para degeneración macular relacionada con la edad

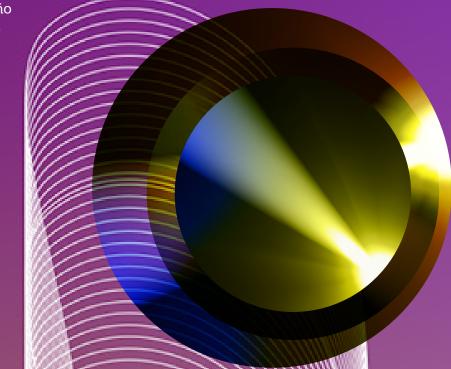
FOSCAN® Se aprueba la temoporfina (Foscan®) para el tratamiento paliativo del cáncer de cabeza y cuello en pacientes que no responden a terapias estándar

2001

2025

QUERATOSIS ACTÍNICA comercialización al nuevo BLU-U® (fuente de luz) para el tratamiento de la

Las especies reactivas de oxígeno (ROS por sus siglas en inglés) son especies que incluyen radi-

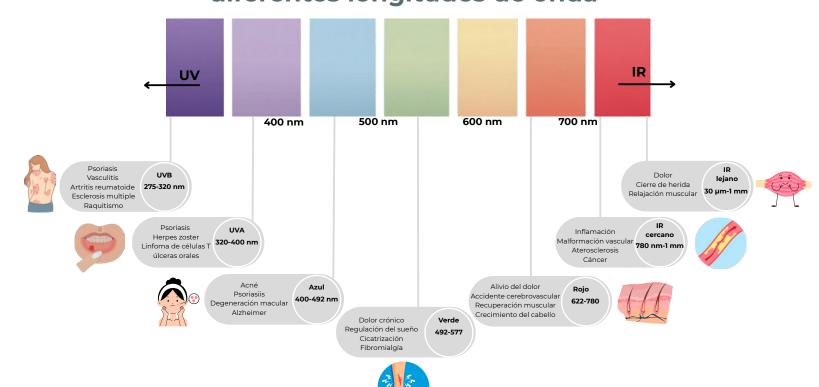

Mercurio Nolante

cales libres y oxidantes que, aunque son importantes para el buen desempeño de funciones biológicas esenciales, entre ellos la defensa contra patógenos, un exceso de ROS puede causar estrés oxidativo, lo que provoca daño celular y puede ser el origen de diversas enfermedades.

Además de sus efectos físicos directos sobre los tejidos, la luz también desempeña un papel clave en el funcionamiento del sistema nervioso central. La luz brillante ha demostrado ser eficaz en el tratamiento de la depresión. Esto se debe a que regula el ritmo circadiano y estimula la producción de neurotransmisores clave en el estado de ánimo.

La fototerapia para el insomnio se basa en la exposición controlada a luz blanca de baja energía. Estudios clínicos han mostrado que sesiones de 30 a 60 minutos cada mañana pueden ayudar a restablecer el ciclo sueño-vigilia, acortar el tiempo necesario para conciliar el sueño y mejorar su calidad general. Esta intervención es especialmente útil en adultos mayores y personas con alteraciones del ritmo circadiano.

Por otro lado, investigaciones recientes han explorado el uso de luz pulsada a 40 Hz para el tratamiento del Alzheimer, particularmente en la


banda azul (alrededor de 473 nm), con el objetivo de estimular la actividad neuronal y promover la conectividad sináptica [6]. Sin embargo, el uso terapéutico de la luz requiere precisión. La selección del tipo de fuente luminosa –láser, LED o lámparas UV—, así como la dosificación y duración de la exposición, son

factores cruciales.

Una sobreexposición puede provocar efectos adversos como daño al ADN, envejecimiento celular o incluso cáncer de piel, especialmente con la radiación UV. Además, la luz puede inducir estrés oxidativo mediante la generación de ROS, que, como ya se mencionó, pueden dañar componentes celulares, pero también pueden activarse de forma controlada con fines te-

al desarrollo de terapias como la Terapia Fotodinámica, de la cual hablaremos en el siguiente apartado. Esta estrategia se aplica con éxinomas orales. Además, permite eliminar

Aplicaciones terapéuticas de la luz en diferentes longitudes de onda

bacterias o células anormales, estimular la regeneración tisular y modular respuestas inflamatorias [6-7]. De este modo, la luz no solo es un estímulo visual, sino una herramienta precisa para tratar enfermedades.

El término "Terapia Fotodinámica" (TFD) consiste en la aplicación de sustancias sensibles a la luz, llamadas "fotosensibil<u>izadores"</u> que se activan al irradiarlas con luz de cierta longitud de onda, pro-duciendo ROS. Aunque inicialmente la TFD se empleó para el tratamiento del cáncer, con los años ha mostrado ser efectiva para combatir diversas enfermedades, entre ellas infecciones, sobre todo de bacterias resistentes a los

Pero, ¿en qué consiste la TFD? Al aplicar luz (generalmente visible) a los fotosensibio bien ayudar a combatir bacterias y hongos. **DÓCFITA**lector | Octubre 2025

La TFD puede incrementar la eficacia de los tratamientos contra el cáncer al combinarse con quimioterapia, radioterapia o inmunoterapia [9]. Por otro lado, la TFD se está convirtiendo en una opción prometedora ante la alerta lanzada por la Organización Mundial de la Salud (OMS) sobre la resistencia antimicrobiana que está provocando que los antibióticos pierdan efectividad [10].

Mercurio Volante

Actualmente, se estima que la resistencia antimicrobiana es responsable de más de 1.27 millones de muertes por año, por lo que contar con una alternativa eficaz es urgente. La efectividad de la TFD se ha incrementado al formular los fotosensibilizadores en nanoacarreadores (por ejemplo, nanopartículas o liposomas), los cuales permiten una liberación controlada del fotosensibilizador en el sitio afectado, mejoran su solubilidad y fotoes-

La TFD tiene todavía obstáculos, como la penetración limitada y el alto esparcimiento de la luz para alcanzar tejidos profundos de forma localizada.

Para resolver este inconveniente se han propuesto diversas alternativas como el uso de nanopartículas capaces de absorber luz en longitudes de onda del infrarrojo, produciendo luminiscencia en la región ultravioleta-visible del espectro. Esto permitirá la activación en sitios inalcanzables para las fuentes de luz convencionales.

Algunos complejos metálicos a base de cobre, zinc, platino, entre otros, usados como fotosensibilizadores poseen una actividad dual. presentando actividad antibacterial y anticancerígena, lo que los hace efectivos para tratar co-infecciones o co-morbilidades. Además, el uso de estos complejos permite una mayor especificidad, sin dañar células sanas o el microbioma del sitio [12]. Por sus cualidades, la TDF sigue siendo objeto de estudio por parte de grupos de investigación en todo el mundo.

ALEGRE ANGÉLICA FLORES PÉREZ Pertenece al Departamento de Biología Celular (Cinvestav-IPN);

NORMA ANGÉLICA VILLANUEVA MARTÍNEZ, al Departamento de Farmacia (Facultad de Química, UNAM);

OMAR MOLINA ALEJANDRE,

al Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica L-322 (Facultad de Estudios Superiores Cuautitlán, UNAM);

JOSÉ MANUEL DE LA ROSA VÁZQUEZ, a la Escuela Superior de Ingeniería Mecánica y Eléctrica Unidad Zacatenco (IPN, Unidad Profesional "Adolfo López Mateos";

ADRIANA GANEM RONDERO,

Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica L-322, Facultad de Estudios Superiores Cuautitlán, UNAM

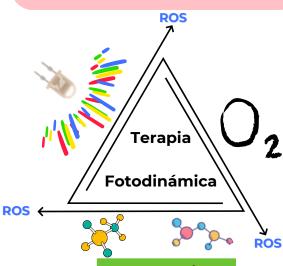
- •1. M. Brodsky. "Revisiting the History and Importance of Phototherapy in Dermatology". JAMA Dermatol 153 (2017) 435. doi: 10.1001/ jamadermatol.2017.0722
- •2. A. Grzybowski, J. Sak, J. Pawlikowski. "A brief report on the history of phototherapy". Clin Dermatol 34 (2016) 532-537. doi: 10.1016/j. clindermatol.2016.05.002.
- •3. A. Downes, T. P. Blunt. "Researches on the Effect of Light upon Bacteria and other Organisms", Proceedings of the Royal Society of London 26 (1877) 488-500 [Online]. Available: https://about. jstor.org/terms.
- •4. H. Hönigsmann. "History of phototherapy in dermatology". Photochem. Photobiol. Sci. 12 (2013) 16-21. https://doi.org/10.1039/ C2PP25120E.
- •5. T. W. R. Hansen, M. J.Maisels, F. Ebbesen, H. J. Vreman, D. K. Stevenson, R. J. Wong, V. K. Bhutani. "Sixty years of phototherapy for neonatal jaundice from serendipitous observation to standardized treatment and rescue for millions". J Perinatol. 40 (2020) 180-193. doi: 10.1038/s41372-019-0439-1.
- •6. A. Li, X. Wei, Y. Xie, Y. Ren, X. Zhu, M. Liu, S. Liu. "Light exposure and its applications in human health". J Biophotonics. 17 (2024) e202400023. doi: 10.1002/jbio.202400023.
- •7. J.F. Algorri, M. Ochoa, P. Roldán-Varona, L. Rodríguez-Cobo, J. M. López-Higuera. "Light Technology for Efficient and Effective Photodynamic Therapy: A Critical Review" Cancers (Basel) 13 (2021) 3484. doi: 10.3390/ cancers13143484.

- •8. H. Abrahamse, M. R. Hamblin. "New photosensitizers for photodynamic therapy". Biochem J. 473 (2016) 347-64. doi: 10.1042/ BJ20150942.
- •9. Q. Liu, R. Yu. "Optimization of tumor photodynamic therapy strategies based on nanotechnology". J Drug Deliv Sci Technol. 111 (2025) 107202. https://doi.org/10.1016/j. jddst.2025.107202
- •10. K. Roa-Tort, Y. Saavedra, A. Villanueva-Martínez, A. Ganem-Rondero, L. A. Pérez-Carranza, J. M. de la Rosa-Vázquez, G. Ugalde-Femat, O. Molina-Alejandre, A. A. Becerril-Osnaya, J. D. Rivera Fernández. "In Vitro Antimicrobial Photodynamic Therapy for Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) Inhibition Using a Green Light Source". Pharmaceutics. 16 (2024) 518. https://doi. org/10.3390/pharmaceutics16040518.
- •11. A. Villanueva-Martínez, O. Molina-Alejandre, A. Flores-Pérez, M. G. Nava-Arzaluz, G. H. López-Mera, R. D. Cruz-Morales, D. Sánchez-García, A. Becerril-Osnaya, A. Pérez-Carranza, E. Piñón-Segundo, S. Bernal-Chávez, J. Pedraza-Chaverri, O. N. Medina-Campos, P. del Valle-Pérez, D. Cerecedo, I. Martínez-Vieyra, A. Ganem-Rondero. "Methylene blue-loaded flexible liposomes improve the efficacy of photodynamic therapy for the treatment of bacterial keratitis". J Drug Deliv Sci Technol. 108 (2025) 106906. https://doi.org/10.1016/j. jddst.2025.106906.
- •12. Afrasiyab, R. Zhou, K. Raziq, T. Xue, D. Sun. "Photodynamic antibacterial therapy by metal complex mediators: A new promise for eliminating drug-Resistant infectious microorganisms". Inorg Chim Acta. 587 (2025) 122818. https://doi.org/10.1016/j.

1. ¿Qué es?

Es un tratamiento novedoso que utiliza tres componentes: luz, oxígeno del ambiente y un fármaco "especial" que se activa con luz.

7. ¿Por qué es tan buena?


Es un tratamiento sencillo, no invasivo, que solo actúa en el lugar de aplicación.

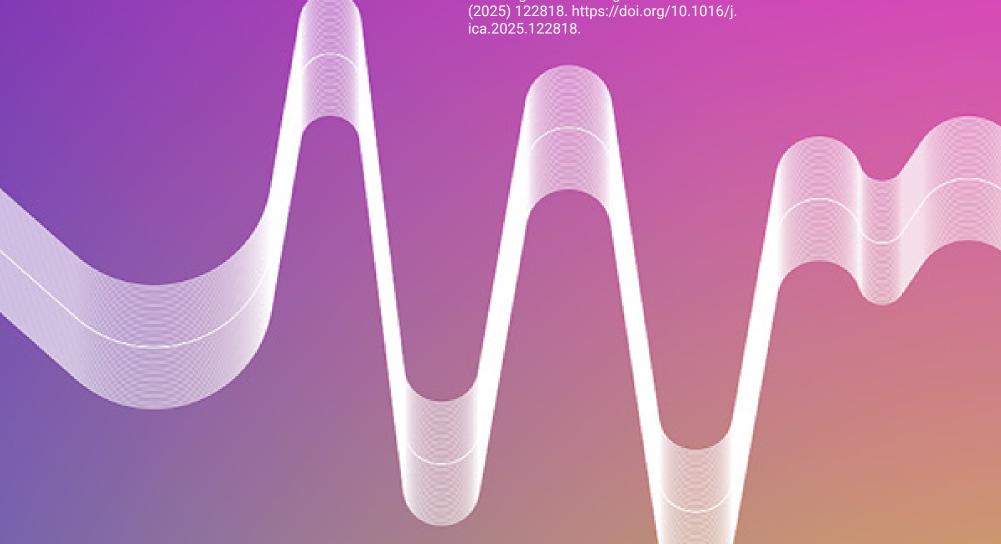
6. Un toque moderno

La terapia fotodinámica puede potenciarse con la nanotecnología, pues puede mejorar la capacidad de penetración del fármaco en el cejido, haciéndola más eficiente. ¡No es magia, es ciencia!

2. ¿Para qué sirve?

Es muy útil para tratar padecimientos como cáncer, infecciones, problemas en los ojos y enfermedades de la piel ¡Es cómo encender un interruptor curativo!

5. Dato Curioso


Te sorprenderá saber que algunos de estos fármacos "especiales" para la terapia fotodinámica se basan en sustancias de origen natural, como algas, plantas e incluso bacterias, pero ¡no hacen nada si no hay luz!

3. ¿Cómo funciona?

- 1. El fármaco se administra. y se acumula en las células enfermas.
- 2. Se irradia luz para que el fármaco se active.
- Esto provoca que se eliminen las células malas, sin afectar el tejido sano. ¡A eso se le llama precisión!

4. ¡Importante!

Aunque es una alternativa moderna y efectiva que se utiliza cada vez más, siempre debe estar sujeto a evaluación de un médico competente ya que no todos los casos son iguales.

